Forming \& Solving Equations Question Paper

Course	EdexcellGCSE Maths
Section	2. Equations, Formulae \& Identities
Topic	Forming \& Solving Equations
Difficulty	Very Hard

Time allowed: 70

Score: /52
Percentage: /100

Question 1

Diagram NOT
accurately drawn

$A B C D$ is a square with a side length of $4 x$
M is the midpoint of $D C$.
N is the point on $A D$ where $N D={ }_{x}$
$B M N$ is a right-angled triangle.
Find an expression, in terms of x, for the area of triangle $B M N$.
Give your expression in its simplest form.

Question 2

Here are two right-angled triangles.

Given that
$\tan e=\tan f$
find the value of X.
You must show all your working.

Question 3

Diagram NOT

 accurately drawnThe lengths of the sides are in centimetres.
The area of triangle \mathbf{T}_{1} is equal to the area of triangle \mathbf{T}_{2}.
Work out the value of x, giving your answer in the form $a+\sqrt{b}$ where a and b are integers.

Question 4

There are only r red counters and g green counters in a bag.
A counter is taken at random from the bag.

The probability that the counter is green is $\frac{3}{7}$

The counter is put back in the bag.
2 more red counters and 3 more green counters are put in the bag.
A counter is taken at random from the bag.
The probability that the counter is green is $\frac{6}{13}$
Find the number of red counters and the number of green counters that were in the bag originally.

Question 5

The diagram shows a rectangle, $A B D E$, and two congruent triangles, $A F E$ and $B C D$.

area of rectangle $A B D E=$ are of triangle $A F E+$ area of triangle $B C D$

$$
A B: A E=1: 3
$$

Work out the length of $A E$.

Question 6

Here is a right-angled triangle.

All measurements are in centimetres.
The area of the triangle is $2.5 \mathrm{~cm}^{2}$.
Find the perimeter of the triangle.
Give your answer correct to 3 significant figures.
You must show all of your working.

Question 7

The total surface area of a solid hemisphere is equal to the curved surface area of a cylinder.
The radius of the hemisphere is $r \mathrm{~cm}$.
The radius of the cylinder is twice the radius of the hemisphere.
Given that

$$
\text { volume of hemisphere }: \text { volume of cylinder }=1: m
$$

find the value of m.

Question 8

$A B C E D$ is a five-sided shape.

$A B C D$ is a rectangle.
$C E D$ is an equilateral triangle.
$A B=x \mathrm{~cm} \quad B C=y \mathrm{~cm}$

The perimeter of $A B C E D$ is 100 cm .
The area of $A B C E D$ is $R \mathrm{~cm}^{2}$
Show that $R=\frac{x}{4}\left(200-[6-\sqrt{3}]_{X}\right)$

Question 9

The diagram shows a sector $O B C$ of a circle with centre O and radius $(6+x) \mathrm{cm}$.

Diagram NOT
accurately drawn

A is the point on $O B$ and D is the point on $O C$ such that $O A=O D=6 \mathrm{~cm}$
Angle $B O C=50^{\circ}$
Given that

$$
\text { the perimeter of sector } O B C=2 \times \text { the perimeter of triangle } O A D
$$

find the value of x.
Give your answer correct to 3 significant figures.

Question 10

A bowl contains n pieces of fruit.
Of these, 4 are oranges and the rest are apples.
Two pieces of fruit are going to be taken at random from the bowl.
The probability that the bowl will then contain $(n-6)$ apples is $\frac{1}{3}$

Work out the value of n
Show your working clearly.
[6 marks]

Question 11

Asphere has radius $2 x \mathrm{~cm}$
A cone has
radius $3 x$ cm
perpendicular height $h \mathrm{~cm}$
The sphere and the cone have the same volume.
Work out radius of cone: perpendicular height of cone
Giveyour answer in the form $a: b$ where a and b are integers.

